3.591 \(\int \frac{1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=492 \[ -\frac{5 a b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{2 d e^{3/2} \left (b^2-a^2\right )^{9/4}}+\frac{5 a b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{2 d e^{3/2} \left (b^2-a^2\right )^{9/4}}-\frac{\left (2 a^2+3 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{d e^2 \left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)}}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{d e \left (a^2-b^2\right )^2 \sqrt{e \cos (c+d x)}}+\frac{b}{d e \left (a^2-b^2\right ) \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 d e \left (a^2-b^2\right )^2 \left (b-\sqrt{b^2-a^2}\right ) \sqrt{e \cos (c+d x)}}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 d e \left (a^2-b^2\right )^2 \left (\sqrt{b^2-a^2}+b\right ) \sqrt{e \cos (c+d x)}} \]

[Out]

(-5*a*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*(-a^2 + b^2)^(9/4)*d*e^(
3/2)) + (5*a*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*(-a^2 + b^2)^(9/
4)*d*e^(3/2)) - ((2*a^2 + 3*b^2)*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/((a^2 - b^2)^2*d*e^2*Sqrt[Cos
[c + d*x]]) - (5*a^2*b*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(2*(a^2 -
b^2)^2*(b - Sqrt[-a^2 + b^2])*d*e*Sqrt[e*Cos[c + d*x]]) - (5*a^2*b*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sq
rt[-a^2 + b^2]), (c + d*x)/2, 2])/(2*(a^2 - b^2)^2*(b + Sqrt[-a^2 + b^2])*d*e*Sqrt[e*Cos[c + d*x]]) + b/((a^2
- b^2)*d*e*Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])) - (5*a*b - (2*a^2 + 3*b^2)*Sin[c + d*x])/((a^2 - b^2)^2*
d*e*Sqrt[e*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.21853, antiderivative size = 492, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 12, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.48, Rules used = {2694, 2866, 2867, 2640, 2639, 2701, 2807, 2805, 329, 298, 205, 208} \[ -\frac{5 a b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{2 d e^{3/2} \left (b^2-a^2\right )^{9/4}}+\frac{5 a b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt{e} \sqrt [4]{b^2-a^2}}\right )}{2 d e^{3/2} \left (b^2-a^2\right )^{9/4}}-\frac{\left (2 a^2+3 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{d e^2 \left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)}}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{d e \left (a^2-b^2\right )^2 \sqrt{e \cos (c+d x)}}+\frac{b}{d e \left (a^2-b^2\right ) \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 d e \left (a^2-b^2\right )^2 \left (b-\sqrt{b^2-a^2}\right ) \sqrt{e \cos (c+d x)}}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 d e \left (a^2-b^2\right )^2 \left (\sqrt{b^2-a^2}+b\right ) \sqrt{e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x])^2),x]

[Out]

(-5*a*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*(-a^2 + b^2)^(9/4)*d*e^(
3/2)) + (5*a*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*(-a^2 + b^2)^(9/
4)*d*e^(3/2)) - ((2*a^2 + 3*b^2)*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/((a^2 - b^2)^2*d*e^2*Sqrt[Cos
[c + d*x]]) - (5*a^2*b*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(2*(a^2 -
b^2)^2*(b - Sqrt[-a^2 + b^2])*d*e*Sqrt[e*Cos[c + d*x]]) - (5*a^2*b*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sq
rt[-a^2 + b^2]), (c + d*x)/2, 2])/(2*(a^2 - b^2)^2*(b + Sqrt[-a^2 + b^2])*d*e*Sqrt[e*Cos[c + d*x]]) + b/((a^2
- b^2)*d*e*Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])) - (5*a*b - (2*a^2 + 3*b^2)*Sin[c + d*x])/((a^2 - b^2)^2*
d*e*Sqrt[e*Cos[c + d*x]])

Rule 2694

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1))/(f*g*(a^2 - b^2)*(m + 1)), x] + Dist[1/((a^2 - b^2)*(m +
1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + p + 2)*Sin[e + f*x]), x], x] /; F
reeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*p]

Rule 2866

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c -
b*d)*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rule 2867

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2701

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[(a*g)/(2*b), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[(a*g)/(2*b),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[(b*g)/f, Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx &=\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}+\frac{\int \frac{-a+\frac{3}{2} b \sin (c+d x)}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))} \, dx}{-a^2+b^2}\\ &=\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt{e \cos (c+d x)}}+\frac{2 \int \frac{\sqrt{e \cos (c+d x)} \left (-\frac{1}{2} a \left (a^2+4 b^2\right )-\frac{1}{4} b \left (2 a^2+3 b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2 e^2}\\ &=\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt{e \cos (c+d x)}}-\frac{\left (5 a b^2\right ) \int \frac{\sqrt{e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2 e^2}-\frac{\left (2 a^2+3 b^2\right ) \int \sqrt{e \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2 e^2}\\ &=\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt{e \cos (c+d x)}}+\frac{\left (5 a^2 b\right ) \int \frac{1}{\sqrt{e \cos (c+d x)} \left (\sqrt{-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e}-\frac{\left (5 a^2 b\right ) \int \frac{1}{\sqrt{e \cos (c+d x)} \left (\sqrt{-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e}-\frac{\left (5 a b^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{\left (a^2-b^2\right ) e^2+b^2 x^2} \, dx,x,e \cos (c+d x)\right )}{2 \left (a^2-b^2\right )^2 d e}-\frac{\left (\left (2 a^2+3 b^2\right ) \sqrt{e \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2 e^2 \sqrt{\cos (c+d x)}}\\ &=-\frac{\left (2 a^2+3 b^2\right ) \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt{\cos (c+d x)}}+\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt{e \cos (c+d x)}}-\frac{\left (5 a b^3\right ) \operatorname{Subst}\left (\int \frac{x^2}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{\left (a^2-b^2\right )^2 d e}+\frac{\left (5 a^2 b \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \left (\sqrt{-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e \sqrt{e \cos (c+d x)}}-\frac{\left (5 a^2 b \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \left (\sqrt{-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e \sqrt{e \cos (c+d x)}}\\ &=-\frac{\left (2 a^2+3 b^2\right ) \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt{\cos (c+d x)}}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 \left (a^2-b^2\right )^2 \left (b-\sqrt{-a^2+b^2}\right ) d e \sqrt{e \cos (c+d x)}}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 \left (a^2-b^2\right )^2 \left (b+\sqrt{-a^2+b^2}\right ) d e \sqrt{e \cos (c+d x)}}+\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt{e \cos (c+d x)}}+\frac{\left (5 a b^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} e-b x^2} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{2 \left (a^2-b^2\right )^2 d e}-\frac{\left (5 a b^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} e+b x^2} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{2 \left (a^2-b^2\right )^2 d e}\\ &=-\frac{5 a b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt{e}}\right )}{2 \left (-a^2+b^2\right )^{9/4} d e^{3/2}}+\frac{5 a b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt{e}}\right )}{2 \left (-a^2+b^2\right )^{9/4} d e^{3/2}}-\frac{\left (2 a^2+3 b^2\right ) \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt{\cos (c+d x)}}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 \left (a^2-b^2\right )^2 \left (b-\sqrt{-a^2+b^2}\right ) d e \sqrt{e \cos (c+d x)}}-\frac{5 a^2 b \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (c+d x)\right |2\right )}{2 \left (a^2-b^2\right )^2 \left (b+\sqrt{-a^2+b^2}\right ) d e \sqrt{e \cos (c+d x)}}+\frac{b}{\left (a^2-b^2\right ) d e \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))}-\frac{5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt{e \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.63914, size = 777, normalized size = 1.58 \[ \frac{\cos ^{\frac{3}{2}}(c+d x) \left (\frac{12 \left (4 a \left (a^2-b^2\right ) \sin (c+d x)-\left (2 a^2 b+3 b^3\right ) \cos (2 (c+d x))-6 a^2 b+b^3\right )}{\left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)}}-\frac{\sin (c+d x) \left (a+b \sqrt{\sin ^2(c+d x)}\right ) \left (-\frac{\left (2 a^2+3 b^2\right ) \csc (c+d x) \left (8 b^{5/2} \cos ^{\frac{3}{2}}(c+d x) F_1\left (\frac{3}{4};-\frac{1}{2},1;\frac{7}{4};\cos ^2(c+d x),\frac{b^2 \cos ^2(c+d x)}{b^2-a^2}\right )+3 \sqrt{2} a \left (a^2-b^2\right )^{3/4} \left (-\log \left (-\sqrt{2} \sqrt{b} \sqrt [4]{a^2-b^2} \sqrt{\cos (c+d x)}+\sqrt{a^2-b^2}+b \cos (c+d x)\right )+\log \left (\sqrt{2} \sqrt{b} \sqrt [4]{a^2-b^2} \sqrt{\cos (c+d x)}+\sqrt{a^2-b^2}+b \cos (c+d x)\right )+2 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{b} \sqrt{\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{b} \sqrt{\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}+1\right )\right )\right )}{\sqrt{b} \left (b^2-a^2\right )}-\frac{48 a \left (a^2+4 b^2\right ) \left (\frac{a \cos ^{\frac{3}{2}}(c+d x) F_1\left (\frac{3}{4};\frac{1}{2},1;\frac{7}{4};\cos ^2(c+d x),\frac{b^2 \cos ^2(c+d x)}{b^2-a^2}\right )}{3 \left (a^2-b^2\right )}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \left (-\log \left (-(1+i) \sqrt{b} \sqrt [4]{b^2-a^2} \sqrt{\cos (c+d x)}+\sqrt{b^2-a^2}+i b \cos (c+d x)\right )+\log \left ((1+i) \sqrt{b} \sqrt [4]{b^2-a^2} \sqrt{\cos (c+d x)}+\sqrt{b^2-a^2}+i b \cos (c+d x)\right )+2 \tan ^{-1}\left (1-\frac{(1+i) \sqrt{b} \sqrt{\cos (c+d x)}}{\sqrt [4]{b^2-a^2}}\right )-2 \tan ^{-1}\left (1+\frac{(1+i) \sqrt{b} \sqrt{\cos (c+d x)}}{\sqrt [4]{b^2-a^2}}\right )\right )}{\sqrt{b} \sqrt [4]{b^2-a^2}}\right )}{\sqrt{\sin ^2(c+d x)}}\right )}{(a-b)^2 (a+b)^2}\right )}{24 d (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x])^2),x]

[Out]

(Cos[c + d*x]^(3/2)*((12*(-6*a^2*b + b^3 - (2*a^2*b + 3*b^3)*Cos[2*(c + d*x)] + 4*a*(a^2 - b^2)*Sin[c + d*x]))
/((a^2 - b^2)^2*Sqrt[Cos[c + d*x]]) - (Sin[c + d*x]*(-(((2*a^2 + 3*b^2)*Csc[c + d*x]*(8*b^(5/2)*AppellF1[3/4,
-1/2, 1, 7/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2) + 3*Sqrt[2]*a*(a^2 - b^2)^
(3/4)*(2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sq
rt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*
x]] + b*Cos[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c +
 d*x]])))/(Sqrt[b]*(-a^2 + b^2))) - (48*a*(a^2 + 4*b^2)*((a*AppellF1[3/4, 1/2, 1, 7/4, Cos[c + d*x]^2, (b^2*Co
s[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2))/(3*(a^2 - b^2)) + ((1/8 + I/8)*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*
Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)
] - Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]] + Log[Sqr
t[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(Sqrt[b]*(-a^2 + b
^2)^(1/4))))/Sqrt[Sin[c + d*x]^2])*(a + b*Sqrt[Sin[c + d*x]^2]))/((a - b)^2*(a + b)^2)))/(24*d*(e*Cos[c + d*x]
)^(3/2)*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Maple [C]  time = 10.079, size = 8216, normalized size = 16.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(3/2)/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}{\left (b \sin \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(3/2)*(b*sin(d*x + c) + a)^2), x)